Extreme Eigenvalues of Sample Covariance and Correlation Matrices

نویسنده

  • Johannes Heiny
چکیده

This thesis is concerned with asymptotic properties of the eigenvalues of high-dimensional sample covariance and correlation matrices under an infinite fourth moment of the entries. In the first part, we study the joint distributional convergence of the largest eigenvalues of the sample covariance matrix of a p-dimensional heavy-tailed time series when p converges to infinity together with the sample size n. We generalize the growth rates of p existing in the literature. Assuming a regular variation condition with tail index α < 4, we employ a large deviations approach to show that the extreme eigenvalues are essentially determined by the extreme order statistics from an array of iid random variables. The asymptotic behavior of the extreme eigenvalues is then derived routinely from classical extreme value theory. The resulting approximations are strikingly simple considering the high dimension of the problem at hand. We develop a theory for the point process of the normalized eigenvalues of the sample covariance matrix in the case where rows and columns of the data are linearly dependent. Based on the weak convergence of this point process we derive the limit laws of various functionals of the eigenvalues. In the second part, we show that the largest and smallest eigenvalues of a highdimensional sample correlation matrix possess almost sure non-random limits if the truncated variance of the entry distribution is “almost slowly varying”, a condition we describe via moment properties of self-normalized sums. We compare the behavior of the eigenvalues of the sample covariance and sample correlation matrices and argue that the latter seems more robust, in particular in the case of infinite fourth moment. Resumé Denne afhandling beskæftiger sig med de asymptotiske egenskaber af egenværdierne for højdimensionale empiriske korrelationsog kovariansmatricer, under antagelse af at matrixindgangene har uendeligt fjerde moment. I første del undersøger vi konvergens i fordeling af de største egenværdier for den observerede kovarians af en p-dimensional tunghalet tidsrække, når p sammen med stikprøvestørrelsen går mod uendelig. Vi generaliserer de eksisterende vækstrater af p fra litteraturen. Under antagelse af regulær variation med haleindeks α < 4, bruger vi en large deviations-tilgang for at vise at de ekstremale egenværdier er essentielt bestemt ud fra de største værdier i et array af iid. stokastiske variable. Herefter udleder vi rutinemæssigt de ekstremale egenværdiers asymptotiske egenskaber ved brug af klassisk ekstremværditeori. Vi fremfører en teori for punktprocesser af de normalisererde egenværdier af den empiriske kovariansmatrix i tilfældet, hvor dens rækker og søjler er afhængige. Med udgangspunkt i, at denne punktproces konverger svagt, udleder vi grænsemomenter af forskellige funktionaler af egenværdierne. I den anden del af afhandlingen viser vi at de største og mindste egenværdier fra en højdimensional korrelationsmatrix har næsten sikre grænser, hvis den trunkerede varians af indgangsfordelingen er „næsten langsom varierende“, en betingelse som kan indentificeres ud fra momentegenskaber af selv-normaliserende summer. Vi sammenligner, hvordan egenværdierne for henholdsvis den empiriske korrelationsog den empiriske kovariansmatrix opfører sig, og argumenterer for at sidstnævnte tilfælde er mere robust, hvilket særligt gælder i tilfældet med uendeligt fjerde moment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring the eigenvalues of covariance matrices from limited, noisy data

The eigenvalue spectrum of covariance matrices is of central importance to a number of data analysis techniques. Usually, the sample covariance matrix is constructed from a limited number of noisy samples. We describe a method of inferring the true eigenvalue spectrum from the sample spectrum. Results of Silverstein, which characterize the eigenvalue spectrum of the noise covariance matrix, and...

متن کامل

Spectrum estimation for large dimensional covariance matrices using random matrix theory

Estimating the eigenvalues of a population covariance matrix from a sample covariance matrix is a problem of fundamental importance in multivariate statistics; the eigenvalues of covariance matrices play a key role in many widely techniques, in particular in Principal Component Analysis (PCA). In many modern data analysis problems, statisticians are faced with large datasets where the sample si...

متن کامل

Inferring the eigenvalues of covariance matricesfrom limited , noisy

The eigenvalue spectrum of covariance matrices is of central importance to a number of data analysis techniques. Usually the sample covariance matrix is constructed from a limited number of noisy samples. We describe a method of inferring the true eigenvalue spectrum from the sample spectrum. Results of Silverstein which characterise the eigenvalue spectrum of the noise covariance matrix and in...

متن کامل

How close are the eigenvectors and eigenvalues of the sample and actual covariance matrices?

How many samples are sufficient to guarantee that the eigenvectors and eigenvalues of the sample covariance matrix are close to those of the actual covariance matrix? For a wide family of distributions, including distributions with finite second moment and distributions supported in a centered Euclidean ball, we prove that the inner product between eigenvectors of the sample and actual covarian...

متن کامل

Eigenvalue variance bounds for Wigner and covariance random matrices

This work is concerned with finite range bounds on the variance of individual eigenvalues of Wigner random matrices, in the bulk and at the edge of the spectrum, as well as for some intermediate eigenvalues. Relying on the GUE example, which needs to be investigated first, the main bounds are extended to families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment Theorem and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017